HOW MUCH DO YOU KNOW ABOUT PRESSUREMETERS?

An overview of Equipe Training’s latest technical seminar on pressuremeters and dilatometers

Also included:
- Respirable Crystalline Silica
- The SPT Test - Getting It Right
- The UK Specification for Ground Investigation
 Second Edition

WANT TO ADVERTISE IN THE GEOTECHNICA?

1. Select your advert size. (Full, Half, Quarter Page, Directory Entry)
2. Select timescale. (1, 3, 6 or 12 Months)
3. Format your artwork. (Adobe PDF, .jpg or .png)
4. Send your artwork to us. (magazine@geotechnica.co.uk, or contact us on 01295 670990)

All adverts placed by Drilling Academy™ members will benefit from discounted rates.

H&S COURSE DATES:
- Avoiding Danger from Underground Services
 14th April 2013 & 17th May 2013
- Safe Supervision of Geotechnical Sites
 10th - 12th April 2013

GEOTECHNICAL COURSE DATES:
- Geotechnical Foundation Design - 26th April 2013
- Soil Description
 31st May 2013

GEOTECHNICAL COURSE DATES:
- Rock Description
 29th March 2013

An overview of Equipe Training’s latest technical seminar on pressuremeters and dilatometers
Contents

7
Cover Article:
The Self-Boring Pressuremeter and Dilatometer
The next two issues of the Geotechnica are devoted to the self-boring pressuremeter and dilatometer tests and the presentations given by Clive Dalton; Robert Whittle and Dr Sara Amoroso at Equipe Training’s latest technical seminar that took place at the end of February 2013. The following is Part One of an overview of the presentations given by Clive Dalton and Robert Whittle of Cambridge Insitu. Part Two will be published in next month’s issue, along with an overview of Dr Amoroso’s presentation on the dilatometer.

13
Does a silent killer lurk in your labs?
Writing for the Geotechnica once again is Tom Phillips of RPA Safety Services. This month Tom discusses the danger of Respirable Crystalline Silica (RCS), a dangerous dust commonly found in our laboratories that is produced during the abrasion or cutting of rock.

17
The SPT Test: Getting It Right
This is the third in a series of articles on safely managing all working geotechnical sites, penned for the Geotechnica by the experts at the Equipe Group. This month we focus on the SPT Test – notably how you should correctly prepare for and carry out the test.

23
The UK Specification for Ground Investigation - Second Edition Explained
Writing for the Geotechnica once again are the experts at the Equipe Group - notably Managing Director Julian Lovell. This month sees the first in a series of articles that will look at the background to and principle changes made within the revision and final publication of the UK Specification for Ground Investigation – Second Edition.

27
Directory
Welcome to the 19th Edition of theGeotechnica - the UK’s fastest growing online geotechnically focussed e-magazine.

This issue, along with next month’s, are largely dedicated to the recent Pressuremeter and Dilatometer Seminar that was organised by Equipe Training. The seminar, which ran at the end of February 2013, featured demonstrations and technical presentations of Cambridge Insitu’s Self-Boring Pressuremeter, as well as Marchetti DMT’s Dilatometer. This month in theGeotechnica we have the first of a two-part series focussing on the Self-Boring Pressuremeter. The article is an insightful overview of the presentation given by Cambridge Insitu’s Robert Whittle on the methods behind and the values of the self-boring pressuremeter.

The second article featured in this issue comes from our resident Health and Safety expert, Tom Phillips of RPA Safety Services. This month Tom discusses the dangers that can lurk in our laboratories unbeknownst to us. Respirable Crystalline Silica (RCS) is the topic of discussion this month, with Tom offering advice on how to tell if you lab has an RCS problem and what you can do to manage it.

Article three of this issue is the third in our series from the experts at the Equipe Group on successful management and application on drilling sites. This month we focus on the SPT Test. The results obtained from an SPT are arguably the most important of all works carried out during a site investigation, however all too often SPTs are carried out incorrectly or without the necessary care and attention. This month’s article strives to aid drillers in making sure that all SPTs undertaken on their sites are done so correctly.

Finally we have an article from Julian Lovell, Managing Director of the Equipe Group. Recently Julian was the keynote speaker at an ICE North East event run in conjunction with the Northern Geotechnical Group and the BGA. The article in theGeotechnica this month is the first in a series that will build upon Julian’s presentation regarding the UK Specification for Ground Investigation: Second Edition. This month sees Julian begin to explain what the second edition of the ‘Yellow Book’ means for the rest of the ground investigation community.

We also have entries in the Directory and Jobs sections, with positions available at Geotechnical Engineering as well as Gardline Geosciences.

As with every new edition of the magazine, the Editorial Team here at theGeotechnica will be on the lookout for even more new, original and interesting content from all corners of the sector, and would actively encourage all readers to come forward with even the slightest bit of appropriate and relevant content - whether it be a small news item or a detailed case study of works recently completed or being undertaken. If this content is media rich and interactive, then all the better. We are looking to increase the already large readership of the magazine through better social media integration and promotion, as well as improving content month on month.

Once again, for any content that is submitted we will ensure that advertising space, proportionate to the quality of content provided, is available for that single edition of the magazine. From then on, if you have submitted content, you will receive a discount on all further advertisements placed within theGeotechnica.

We hope you enjoy this month’s edition of the magazine and are inspired to contribute your own content for the coming editions of theGeotechnica.

Editorial Team, theGeotechnica
THE SELF-BORING PRESSUREMETER AND DILATOMETER

The latest in the series of technical seminars held by Equipe Training took place on the 26th of February at their offices and training facilities just outside of Banbury. The event examined the use of pressuremeters and dilatometers with particular emphasis on the self-boring pressuremeter and the seismic dilatometer.

The presentations were given by Clive Dalton of Cambridge Insitu, considered by many to be the world's leading expert on the self-boring pressuremeter and Dr Sara Amoroso of Marchetti DMT (Italy). Sara's highly acclaimed PhD thesis looked at the use and interpretation of the seismic dilatometer to obtain geotechnical parameters.

The seminar was planned to coincide with the imminent publication of Eurocodes 22476 parts 4, 5, 6, 7 and 8.

4 Menard pressuremeter: Publication soon?
5 Flexible dilatometer: Publication soon?
6 Self-boring pressuremeter: Enquiry complete
7 Borehole jacking test: Publication soon?
8 Full displacement p/meter: Enquiry complete

The pressuremeter test is something which has been sparsely used by geotechnical engineers in the United Kingdom and is often poorly understood. The day was designed to inform attendees of the application, theory and interpretation of these instruments. This information included lectures by the distinguished guests and practical demonstrations of the use of the equipment in the field followed by interpretation of the results. The day started with Clive Dalton explaining the use and data obtained from the pressuremeter and in particular the self-boring pressuremeter. Later Robert Whittle also from Cambridge Insitu presented the interpretation of results from the self-boring pressuremeter.

The next two issues of the Geotechnica are devoted to these tests and the presentations given by Dalton, Whittle and Amoroso. The following is Part One of an overview of the presentations given by Clive Dalton and Robert Whittle of Cambridge Insitu. Part Two will be published in next month’s issue.

Part 1 – What is a pressuremeter?

Pressuremeters are devices for carrying out insitu testing of soils and rocks to obtain strength and stiffness parameters. The devices are cylindrical and part of the length is covered by a flexible membrane. Pressuremeters can be pushed, inserted into a pre-bored hole or by self bored where the instrument makes its own hole. Once in the ground, increments of pressure are applied to the inside of the membrane forcing it to press against the soil and so loading a cylindrical cavity.

A test consists of a series of readings of pressure and the consequent displacement of the cavity wall, and the loading curve so obtained may be analysed using rigorous solutions for cylindrical cavity expansion and contraction. It is this avoidance of empiricism that makes the pressuremeter test potentially so attractive. The test is usually carried out in a vertical hole so the derived parameters are those appropriate to the horizontal plane.

“The interpretation of the pressuremeter test must take account of the disturbance caused by the method used to place the probe in the ground.”

The interpretation of the pressuremeter test must take account of the disturbance caused by the method used to place the probe in the ground. The least disruptive of the methods is self boring where disturbance is often small enough to lie within the elastic range of the material and is therefore recoverable. This is the only technique with the potential to determine directly the in situ lateral stress, \(\sigma_{ho} \), the major source of uncertainty when calculating the coefficient of earth pressure at rest, \(K_0 \), at similar depths and give similar results for strength and stiffness. Although the loading paths appear very different there are similarities in the unloading paths...

“Although the loading paths appear very different there are similarities in the unloading paths...”
The prebored method of insertion requires a pocket to be formed in the ground by conventional drilling tools and the instrument is subsequently placed in the pre-formed hole. “The major defect in this method is the complete unloading of the cavity that takes place in the interval between removing the boring tool and pressurising the probe.”

The major defect in this method is the complete unloading of the cavity that takes place in the interval between removing the boring tool and pressurising the probe. The material must be capable of standing open and so the method is best suited to rock. As Figure 1 indicates it is possible to make a test in stiff clay. However comparing the pre-bored curve to the self-bored shows how much further the cavity may have to be expanded before the influence of insertion disturbance can be erased. The method can be used in dense sand if drilling muds are used to support the open borehole but it is unlikely to be suitable for loose sands. The Ménard pressuremeter widely used in France is an example of a pre-bored device. In the UK the High Pressure Dilatometer (the terms “dilatometer” and “pressuremeter” are interchangeable in this context) is available and is used in rocks and materials such as boulder clay, and dense sands. A pre-bored operation will require the assistance of a drilling rig. Unlike the other insertion methods, if the hole is cored then it may be possible to make laboratory tests on material that is directly comparable to that being tested by the Cone Pressuremeter (CPM) test and shows a clear plateau after the cavity has been expanded by about 15%. Strength parameters are derived from the contraction curve and stiffness parameters from the response of small rebound cycles. The method is fast and can make a test in any material into which a cone can be inserted. “Pre-bored pressuremeter testing in a vertical hole has been carried out to depths greater than 500 metres and depths of 200 metres are routine.”

Pushed-in pressuremeters are forced into the ground so raising the state of stress in the surrounding soil. A special case of this approach is the Cone Pressuremeter (CPM) where a 15cm 2 cone is connected to a pressuremeter unit of the same diameter. The disturbance caused to the material is total and the only parameter that can be obtained from the loading path is the limit pressure of the soil. The ‘pushed’ curve in Figure 1 is an example of a CPM test and shows a clear plateau after the cavity has been expanded by about 15%. Strength parameters are derived from the contraction curve and stiffness parameters from the response of small rebound cycles. The method is fast and can make a test in any material into which a cone can be inserted. “The method is fast and can make a test in any material into which a cone can be inserted.”

However as Figure 1 indicates the stresses required to make a satisfactory test are much higher than for the other methods, and at these levels of stress it is probable that crushing of the soil particles is taking place. This may be a significant factor especially for tests in sand. “This may be a significant factor especially for tests in sand.”

The Cambridge self boring pressuremeter is a miniature tunnelling machine that makes a pocket in the ground into which the device very exactly fits. The foot of the device is fitted with a sharp edged internally tapered cutting shoe. When boring, the instrument is jacked into the ground, and the material being cut by the shoe is sliced into small pieces by a rotating cutting device. The distance between the leading edge of the shoe and the start of the cutter is important and can be optimised for a particular material. If too close to the cutting edge the ground suffers stress relief before being sheared. If the cutter is too far behind the shoe edge then the instrument begins to resemble a close ended pile. “If the cutter is too far behind the shoe edge then the instrument begins to resemble a close ended pile.”

The Cambridge self boring pressuremeter is a miniature tunnelling machine that makes a pocket in the ground into which the device very exactly fits. The foot of the device is fitted with a sharp edged internally tapered cutting shoe. When boring, the instrument is jacked into the ground, and the material being cut by the shoe is sliced into small pieces by a rotating cutting device. The distance between the leading edge of the shoe and the start of the cutter is important and can be optimised for a particular material. If too close to the cutting edge the ground suffers stress relief before being sheared. If the cutter is too far behind the shoe edge then the instrument begins to resemble a close ended pile. “If the cutter is too far behind the shoe edge then the instrument begins to resemble a close ended pile.”
The instrument is connected to the jacking system by a drill string. This is in two parts, an outer fixed casing to transmit the jacking force and an inner rotating rod to drive the cutter device. The drill string is extended in one metre lengths as necessary to allow continuous boring to take place. All the cut material is flushed back to the surface through the instrument annulus, there is no erosion of the cavity wall. Normally water is used but air and drilling muds have been successfully applied.

Self boring is effective in materials from loose sands and soft clays to very stiff clays and weak rock. It will not operate in gravel and materials hard enough to damage the sharp cutting edge. In principle the probe can be made to enter the ground with negligible disturbance. In practice, self boring results in a small degree of disturbance that must be assessed before deciding a value for the insitu lateral stress. Experience has shown that the self boring disturbance is low enough to remain within the elastic range of the material.

The SBP requires a modest amount of reaction. On some soft clay sites it is possible for the self boring kit to operate without support from other drilling tools. The minimum interval between tests is one metre. Where tests are more widely spaced or in materials with occasional bands of hostile layers the SBP can be used in conjunction with a cable percussion system, or be driven by a rotary rig using special adaptors. Self boring in a vertical hole is routinely carried out to depths of 60 metres or more.

There are many designs of pressuremeter in current use, some of which are of complex construction. Figure 2 is a view of the inside of a 6 arm Cambridge self boring pressuremeter. There are transducers for measuring the radial displacement of the membrane at 6 places and the total and effective pressure being applied to the cavity wall. The electronics for the signal conditioning including the conversion from analogue to digital is contained in the probe itself. Apart from supplying power, the output of the probe may be connected directly to the serial port of a small computer. This approach is necessary in order to obtain a high resolution free of noise. Pressuremeters with local instrumentation are able to resolve without difficulty displacements of 0.5 microns and pressure changes of 0.1kPa.

Pressuremeters can be expanded using air or a non-conducting fluid such as light transformer oil. There are automated systems for pressurising the equipment. Automation allows the expansion of the cavity to occur at a constant rate of strain. It is conventional to log the output of the pressuremeter on computer and to plot the loading curve in real time.

Meticulous calibration of the equipment is vital. The transducers must be calibrated regularly both for sensitivity and drift. Almost all pressuremeters suffer the defect that the output of the transducers is governed by the movements and pressure on the inside of the membrane, where what is required is the displacements and stresses acting on the cavity wall. The properties of the pressuremeter membrane can be a significant source of uncertainty. It requires an amount of work to make it move, and an additional component to keep it moving. This is relevant to tests in soft soils. The membrane contribution may be estimated by carrying out membrane expansion tests in free air.

The other major influence on the measurements is system compliance, or the contribution of the probe itself to the measured stiffness. This can be a significant source of error if the probe is used in very stiff soils or weak rock. This contribution may be estimated by inflating the instrument to full working load inside a metal sleeve of known elastic properties.

The importance of the various calibrations depends on the type of pressuremeter and where it is being used. For example the contribution of the hose supplying pressure to the probe is highly relevant if volume changes are being measured at the surface, but is of no importance at all for a probe with internal instrumentation, such as the Cambridge family of devices.

Next month's issue of the Geotechnica will be a continuation of this article, focusing on the Advantages and Limitations of the Pressuremeter Test, as well as what parameters can be obtained from the tests.
Respirable Crystalline Silica (RCS) is deadly! The dust produced during the abrasion or cutting of rock and sand based products, can produce fine dusts and powders, which penetrate deep in to the lungs and cause severe lung diseases.

“Diseases such as silicosis and lung cancer are not uncommon in those who work with crystalline silica…”

Diseases such as silicosis and lung cancer are not uncommon in those who work with crystalline silica and if anyone working in an environment where RCS is present develops asthma, this then becomes a RIDDOR reportable disease and a visit from the HSE is highly likely.

“For those managing work in laboratories, the risk of working with RCS, is too often unidentified and “The first clues to if you have a problem is when lab staff complain of brown mucous when blowing their noses…””

Brown mucous when blowing their noses, or there is always a film of dust on work surfaces caused by inadequate control. Although the main processes of concern are sieving’s and grading’s and crushing, simple actions such as brushing down clothing or sweeping up, can cause elevated levels of RCS in the air which are unacceptable.

Crystalline silica is most commonly found in the form of quartz and is a component of sand, sandstone, granite, slate, coal, is present in most common rocks, almost every mineral, and occurs in most soils. When it is cut or abraded, the finer particles become respirable, which means they are able to penetrate deep into the lungs of those working with it.”

But the question is, to what extent do labs have a problem? Well it largely depends on what you do in the lab. If your work involves the drying, sorting, sieving, grading of any potentially crystalline silica containing material, you will have some in the air.

The first stage in managing RCS is to measure the levels in the air to see if there is RCS in the air and how much of it contains RCS.

If your work involves the drying, sorting, sieving, grading of any potentially crystalline silica containing material, you will have some in the air. The question is, how much is in the air and is it respirable?

This can only be accomplished using equipment and techniques as laid down by the HSE / HSC and developed by the Institute of Occupational Medicine (IOM).”

Penalties for exceeding these levels or exposing staff can include prohibition notices and hefty prosecutions.”

Penalties for exceeding these levels or exposing staff can include prohibition notices and hefty prosecutions.

The key is to determine what level of dust is in the air and how much of it contains RCS.

If you do have an RCS problem, then prevention of the dust during work is the primary control. The company must ask itself if testing can be accomplished without liberating RCS and if it can’t, then it must be done under controlled conditions. Where RCS is still generated then Local Exhaust Ventilation (LEV), air-fed masks with certified air, suitable clothing and cleaning procedures are all essential. Health surveillance is normally required for staff working in areas of concern and training of staff to recognise the importance.

“Don’t get caught out. Where the HSE impose fines these are similar to those passed down for asbestos exposure incidents.”

Don’t get caught out. Where the HSE impose fines these are similar to those passed down for asbestos exposure incidents. Although new cases of silicosis are falling year on year, it is still too frequent and there are many who remain undiagnosed.
ROTARY DRILLING
7th May 2013
AWARENESS
FOR ENGINEERS

The course is a unique opportunity to learn about drilling techniques as well as assessing and observing rigs in operation. The content will include drilling techniques and equipment, advantages and limitations and new technologies as well as the legislative requirements which impact on rotary drilling. The course will comprise some theory in the classroom but will also be based outside with rotary drill rigs in action.

- Rotary Drilling Techniques
- Open Hiling
- Percussive inc. Down The Hole Hammer
- Coring – conventional and wireline
- Sonic (Rota-Sonic)
- Rotary Drilling Demonstration*
- Advantages and Limitations
- Environmental Issues
- Health and Safety – PUWER & LOLER inc. Rig Guarding
- Health and Safety Audit on Drill Rigs*
*N.B. Those aspects shown in bold will be practical activities outside.

Who should attend?
This course is essential training for Engineers, Geologists and Ground Specialists specifying or supervising rotary drilling works or those who just want to improve their knowledge.

For more information, or to book your place on a course, please contact Equipe Training on:

info@equipetraining.co.uk
www.equipegroup.com
01295 670990
01295 678232

LABORATORY BASED JOB OPPORTUNITIES

K4 Soils Laboratory currently has vacancies for a Laboratory and Site Technician, based in Watford, Hertfordshire.

Experience is welcomed but not essential, as full training will be given.

If you are interested, then please email a copy of your CV to ken@k4soils.com

ROTARY DRILLING
8th - 10th May 2013
TRAINING

Equipe Training are offering comprehensive Rotary Drilling Training that will take place over the course of three days. Each day will focus on a specific aspect of rotary drilling with the aim to give all attendees a high level of understanding of the skills, techniques and knowledge required to safely and effectively operate rotary drilling rigs.

DAY ONE: ROTARY DRILLING AWARENESS
Day One is a must for those specifying, managing, supervising and carrying out rotary drilling operations so that they can understand the drilling activity and interact more professionally with the drill crew.

- Rigs and Applications
- Ancillary Plant
- Flushing Media
- LOLER Requirements & Inspections

DAY TWO: DRILLING APPLICATIONS
Day Two is a must for those drillers and drilling engineers serious about drilling properly, efficiently and knowledgably. The day will incorporate hands on practicals where attendees will obtain a better understanding about how geology and hydrogeology may affect the drilling process, coring and core barrels and the drills themselves including demonstrations.

- Eurocode explained for drilling
- Eurocode sampling and reporting
- Applied Geology in Drilling

DAY THREE: MINI MUD SCHOOL BY CLEAR SOLUTIONS LTD
Designed to improve borehole efficiency, Day Three is a real eye opener for those who would like a better understanding of how geology and hydrogeology may affect the drilling process, coring and core barrels and the drills themselves including demonstrations.

- Maximising productivity – when should additives be considered
- Maximising hole integrity during drilling
- Understanding and use of muds & polymers
- Measuring – viscosity etc
- Stabilisations

Attend one, two or all three days.
£150 + VAT per day – limited availability.

To book your place, please contact Equipe Training:

info@equipetraining.co.uk
www.equipegroup.com
01295 670990
01295 678232
It is difficult to emphasize just how important the accuracy of SPT results can be. Currently within the Ground Investigation industry it is the single most highly used piece of information for design. The N value is often relied upon as the only meaningful information used from the site work. Unfortunately all too often the reliability of the test results are, at best, suspect and sometimes very misleading due to poor practice and understanding.

In theory it is a very simple test which should be very reliable, but it is how the test is understood and carried out which is most often the cause of problem. So how exactly should the test be carried out to ensure the results obtained are as reliable as possible?

Equipment

The majority of SPT hammers comprise of a two claw/pawl spring loaded lifting mechanism - however hammers with three claws have also been manufactured. The SPT hammer drop weight is lifted using the winch rope on the rig and is automatically tripped when the pawls reach a raised section on the guide rod. This raised section moves the pawls outwards thus releasing the 63.5kg drop-weight. The distance from the anvil to the raised section is called the drop height. This height should be 760mm. Other types of SPT equipment can comprise of chain driven drop weights – this is standard mechanism used on Dynamic Sampling rigs. The mechanism is comprised of a weight which is lifted up by one or two guide rods on arms, which are all within the chain. These then move away from the weight at the required drop height. As the test is carried out the carriage carrying the drop weight follows the weight down. More recently rigs have been equipped with a new type of hammer which is also chain driven, but after each blow the carriage is automatically lifted from the drop weight ensuring that only the weight of the hammer performs the test.

Whichever type of hammer is used the test itself is carried out in exactly the same fashion.

Preparation

To carry out an SPT test it is first necessary to clean the base of the borehole at the required depth measure and record this accurately using a tape measure. If there is groundwater in the hole it is essential that this is measured and recorded. Should the strata be granular and should water have been encountered within the hole then it is necessary to ensure that boiling or blowing does not occur. If this is allowed to happen then any values recorded can be very
inaccurate. To prevent blowing-boiling from happening a positive head of water must be maintained in the hole. This means keeping the water level in the borehole above the standing water level - the head of water needs to be in place prior to the cleaning of the borehole and be maintained.

"It is just as important that the casing is not driven below the base of the borehole..."

during the test itself. It is just as important that the casing is not driven below the base of the borehole, this will cause disturbance of the material being tested and even lead to plugging of the casing leading to very inaccurate values being produced.

The borehole, casing and water level at the start of the test must be recorded on the drilling log. The driller needs to decide if he is going to use a split spoon or solid cone to carry out the test. This decision is dependent on the material the test is to be carried out in. If the soil is fine grained, a silt sand or clay a split spoon must be used. If the soil to be tested comprises or contains gravel then a solid cone must be used.

The cone or split spoon should be clean and have a sharp cutting edge or point. Blunt / damaged shoes or rounded cones will lead to poor results being obtained. The tool should be screwed tightly to the rods and each rod must be tightened so that the thread shoulder meets the end of the thread. The rods must be lowered to the base of the hole and never dropped - as is often the case with dynamic sampling rigs with a rod handling system. With sufficient rods added, the SPT tool should be placed on the base of the hole. The rod should be marked level with the top of the casing. Only then should the hammer be attached and the weight of the assembly be allowed to rest in the bottom of the hole. Any penetration under self-weight should be monitored and recorded. The rods should then be re-marked in intervals of 75mm up from where they are level with the top of the casing. If casing has not been used then some other datum point should be used.

Blows should be delivered with the hammer assembly held vertical; the weight should drop cleanly and freely in order to strike the anvil squarely. This can be achieved by utilising the casing clamps on a Rotary Rig to loosely close around the rod, or by use of a rod guide (as shown) in the case of a Cable Percussion rig.

"This can be achieved by utilising the casing clamps on a Rotary Rig to loosely close around the rod, or by use of a rod guide (as shown) in the case of a Cable Percussion rig."

A worn CPT Cone

A rod guide.
The Test

Within Eurocode 22473 Part 3 spacings of the SPT increments are stated as being at 150mm intervals, however within the UK best practice advises us to use increments spaced at 75mm for greater accuracy. We will therefore use this best practice to explain the test. The first two increments comprise the seating blows - the combined blows to achieve seating should not exceed 25. If 25 blows are achieved before the full 150mm has been driven then the seating drive should be stopped and the penetration achieved at 25 blows should be recorded. If this is the case the rods should be remarked from the depth achieved again into divisions of 75mm for a distance of 300mm.

The test can now be started. The number of blows required to achieve each of the 75mm penetrations should be recorded as below in Figure 1.

<table>
<thead>
<tr>
<th>Depth (M)</th>
<th>Casing (M)</th>
<th>Water (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>0.75</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>0.75</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>0.75</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>1.00</td>
<td>12.50</td>
<td>6.70</td>
</tr>
</tbody>
</table>

Figure 1: Test Record.

If 25 blows are achieved before the full 150mm has been driven then the seating drive should be stopped...

"If 25 blows are achieved before the full 150mm has been driven then the seating drive should be stopped..."

Should the number of blows reach 50 before the full 300mm has been driven then the test must be stopped and recorded as below in Figure 2.

Split spoon samplers are not designed to be driven beyond the 50 blow region as it may cause distortion in the barrel assembly. The rods can then be withdrawn from the borehole. "If the split spoon has been used it should be dismantled, the sample described and the sample and shoe sample should now be removed from the sampler into a jar or tub."

If the split spoon has been used it should be dismantled, the sample described and the sample and shoe sample should now be removed from the sampler into a jar or tub. It is important that the sample is placed in a solid container and not a bag to retain its structure. It is important that the shoe sample is retained on all tests and not discarded. If the test has been conducted using a cone SPT/C a sample should be recovered over the tested length.

Checks of the test equipment and its correct functioning should be carried out at regular intervals - a basic check of the equipment should be carried out daily. All parts should be clean and dry free from dirt or grease. An annual check of the energy ratio must be carried out and a certificate made available..."

"All parts should be clean and dry and free from dirt or grease. An annual check of the energy ratio must be carried out and a certificate made available..."

The drop-hammer weight and the drop height should be checked, as should the straightness of the rods being used. Also, threads should be clean with the thread screw fully up.

If 25 blows are achieved before the full 300mm has been driven then the test must be stopped...

The energy ratio is particularly important on sites where more than one hammer is being used - variations in energy ratios of different hammers can be as high as 50%, which if unknown can lead to huge variations in foundation design. The drop-hammer weight and the drop height should be checked, as should the straightness of the rods being used. Also, threads should be clean with the thread screw fully up. Square rods should never be used to carry out an SPT test.

The drilling logs must include the details of Hammer ID, an energy ratio, which should be checked to correspond to the relevant certificate, along with the type of drill rod used to carry out the test.

Providing that the equipment is properly looked after, the energy ratio is known and that the test is carried out recorded by a competent person, then comparable accurate results can be obtained.
In 2003 the process to carry out a revision of Part 3 of the Site Investigation Steering Group (SISG) series of documents entitled Site Investigation in Construction was commenced. The First Edition of Part 3: The Specification for Ground Investigation, commonly known as the ‘Yellow Book’, was published in 1993 and was very successful and the top seller from the series. It was, however, recognised that a revision was required to bring the document up to date with current practice, legislation and guidance.

"It was, however, recognised that a revision was required to bring the document up to date with current practice, legislation and guidance."

After some initial delays, the process started in earnest in 2006 through a Working Party formed by the AGS (Association of Geotechnical and Geoenvironmental Specialists) and Soil Mechanics acting as their Lead Author. AGS were tasked by SISG with producing a revision of the ‘Yellow Book’ and not a complete re-write and therefore the main structure was to be maintained i.e. Specification, Bill of Quantities and Schedules together with Notes for Guidance.

The new title of ‘UK Specification for Ground Investigation’ required the Second Edition to be written in a way to enable it to be more widely accepted and to be more flexible to allow it to be used for very simple projects to very complicated projects. The AGS Working Party were also keen for the final document to be published using an interactive on-line format...

"The AGS Working Party were also keen for the final document to be published using an interactive on-line format..."
KeyLogbook® revolutionises the way site data is captured, recorded and transmitted. Drillers and engineers no longer need to keep re-entering the same data over and over again thus reducing errors and making the whole process simpler, faster, smarter, greener and more efficient. The system records all site data at source and transmits it direct from site saving time and money from the outset.

- Confidence that all data is complete
- AGS data available immediately.
- Accurate financial control.
- Quicker and more efficient turnaround of logs and data.
- Quicker scheduling of laboratory testing.
- Easier to maintain chain of custody.
- No delays due to re-scheduling or re-drilling.
- Enables rapid informed decisions.

KeyLogbook® developed by Equipe Geosolutions and Keynetix

Geotabneackle ObservationS
Bespoke Monitoring Solutions

- Inclinometers
- Extensometers
- Piezometers
- Shape Arrays
- Dataloggers
- Interpretation

The Peter Vaughan Building
9 Avro Way Brooklands
Weybridge Surrey
KT13 0YF

tel +44 (0)1932 352040
fax +44 (0)1932 356375
info@geo-observations.com
www.geo-observations.com

Our approach is characterised by quality and driven by understanding

Geolabs perform a wide range of geotechnical tests on soils, aggregates and rocks, many of them UKAS accredited, including:
- Stress Path with piezo benders & local strain
- Effective & Total Stress Triaxial Testing
- Triaxial, Rowe Cell & Horizontal Permeability
- Large and Small Direct Shear & Ringshear
- Hydraulic, CRS & Incremental Consolidation
- UCS, Young’s Modulus & Poisson’s Ratio
- Classification (PSD, LL&PL, compaction etc)
- Custom research & development projects

Geolabs Limited
Bucknalls Lane, Garston, Watford
Hertfordshire, WD25 9XX
Tel: +44 (0)1923 892 190
email: admin@geolabs.co.uk
1. Select your advert size.
(Pull, Half, Quarter Page, Directory Entry)

2. Select timescale.
(1, 3, 6 or 12 Months)

3. Format your artwork.
(Adobe PDF, .jpg or .png)

4. Send your artwork to us.
(magazine@geotechnica.co.uk, or contact us on 01295 670990)

Directories
borehole surveying software
APEX DRILLING SERVICES
Sturmi Way, Bridgend, CF33 6BZ
Tel: 01656 749149
Email: thomas.martin@apex-drilling.com

BOREHOLE SOLUTION SITE INVESTIGATION
13 Great North Road, Buckden, St Neots, Cambridgeshire, PE19 5XJ
Tel: 01480 812457 Mob: 07969 715655
Email: boreholesolutions@gmail.com

GEOTECHNICAL ENGINEERING
Centurion House, Olympus Business Park, Quedgeley, Gloucester, GL2 4NF
Tel: 01452 527743 Fax: 01452 729314
Email: geotech@geoeng.co.uk

RGI GEOTECHNICAL INVESTIGATION
Unit 37, Longfield Road, Sydenham Industrial Estate, Leamington Spa, Warwickshire, CV31 1XN
Tel/Fax: 01949 791110 Fax: 01949 791108
Email: enquiries@terrafirma.co.uk

TERRAFIRMA GOUND INVESTIGATION
Rowan Tree Farm, Blackwell Hall Lane, Ley Hill, Buckinghamshire, HP5 1UN
Tel: 01494 791110 Fax: 01494 791108
Email: enquires@terrafirmagi.co.uk

keynetix ltd
Systems Park, Moons Park, Burnt Meadow Road, Redditch, Worcestershire, B98 9PA
Tel: 01527 68888 Fax: 01527 62880
Email: sales@keynetix.com

geotechnical software
TERRADAT
Unit 1, Link Trade Park, Penarth Road, Cardiff, CF11 8TQ
Tel: 0870 303050 Fax: 0870 303051
Email: web@terradat.co.uk

GEOTECHNICAL OBSERVATIONS
The Peter Vaughan Building, 9 Avro Way, Brooklands, Weybridge, Surrey KT13 0YF
Tel: 01932 352040 Fax: 01932 356375
Email: info@geo-observations.com

KEYNETIX LTD
Systems Park, Moons Park, Burnt Meadow Road, Redditch, Worcestershire, B98 9PA
Tel: 01527 68888 Fax: 01527 62880
Email: sales@keynetix.com

GEOTECHNICAL OBSERVATIONS
The Peter Vaughan Building, 9 Avro Way, Brooklands, Weybridge, Surrey KT13 0YF
Tel: 01932 352040 Fax: 01932 356375
Email: info@geo-observations.com

geotechnical specialists
GROUND TECHNOLOGY
Ground Technology Services, Maple Road, Kings Lynn, Norfolk, PE34 3AF
Tel: 01553 817657 Fax: 01553 817658
Email: mail@groundtechnology.co.uk

 Consultants

GEOMEM
24 John Huband Drive, Birkhill, Angus, DD2 5RY United Kingdom
Tel: 01382 329 011 Fax: 01382 230 256
Email: tech@geOMEM.com

EB SAFETY
Tel: 01926 642465 Mob: 07881858271
Email: ebetts@ebsafety.co.uk

health and safety

DRILLWELL
Unit 3, Rotherham Close, Killamarsh, Sheffield, S21 2SU
Tel: 0114 248 7833 Fax: 0114 2487997
Email: sales@drillwell.co.uk

field instrumentation

CONCEPT
Unit 8 Warple Mews, Warple Way, London W3 0RF
Tel: 020 8811 2880 Fax: 020 8811 2881
Email: si@conceptconsultants.co.uk

GEOTECHNICAL OBSERVATIONS
The Peter Vaughan Building, 9 Avro Way, Brooklands, Weybridge, Surrey KT13 0YF
Tel: 01932 352040 Fax: 01932 356375
Email: info@geo-observations.com

GEOTECHNICAL ENGINEERING
Centurion House, Olympus Business Park, Quedgeley, Gloucester, GL2 4NF
Tel: 01452 527743 Fax: 01452 729314
Email: geotech@geoeng.co.uk

TERRADAT
Unit 1, Link Trade Park, Penarth Road, Cardiff, CF11 8TQ
Tel: 0870 303050 Fax: 0870 303051
Email: web@terradat.co.uk

GEOTECHNICAL OBSERVATIONS
The Peter Vaughan Building, 9 Avro Way, Brooklands, Weybridge, Surrey KT13 0YF
Tel: 01932 352040 Fax: 01932 356375
Email: info@geo-observations.com

keynetix ltd
Systems Park, Moons Park, Burnt Meadow Road, Redditch, Worcestershire, B98 9PA
Tel: 01527 68888 Fax: 01527 62880
Email: sales@keynetix.com

GEOTECHNICAL OBSERVATIONS
The Peter Vaughan Building, 9 Avro Way, Brooklands, Weybridge, Surrey KT13 0YF
Tel: 01932 352040 Fax: 01932 356375
Email: info@geo-observations.com

health and safety

EB SAFETY
Tel: 01926 642465 Mob: 07881858271
Email: ebetts@ebsafety.co.uk

Health & Safety Consultant

 geochemistry
 EUROPEAN GEOPHYSICAL SERVICES
 22 Sansaw Business Park, Hadnall, Shrewsbury, Shropshire SY4 4AS
 Tel: 01939 210 710 Fax: 01939 210 532
 Email: europeophys@europeangeophysical.com

TERRADAT
Unit 1, Link Trade Park, Penarth Road, Cardiff, CF11 8TQ
Tel: 0870 303050 Fax: 0870 303051
Email: web@terradat.co.uk

geophysics
 EUROPEAN GEOPHYSICAL SERVICES
 22 Sansaw Business Park, Hadnall, Shrewsbury, Shropshire SY4 4AS
 Tel: 01939 210 710 Fax: 01939 210 532
 Email: europeophys@europeangeophysical.com

TERRADAT
Unit 1, Link Trade Park, Penarth Road, Cardiff, CF11 8TQ
Tel: 0870 303050 Fax: 0870 303051
Email: web@terradat.co.uk

geophysics
 EUROPEAN GEOPHYSICAL SERVICES
 22 Sansaw Business Park, Hadnall, Shrewsbury, Shropshire SY4 4AS
 Tel: 01939 210 710 Fax: 01939 210 532
 Email: europeophys@europeangeophysical.com

TERRADAT
Unit 1, Link Trade Park, Penarth Road, Cardiff, CF11 8TQ
Tel: 0870 303050 Fax: 0870 303051
Email: web@terradat.co.uk
Rotary Drillers

We have vacancies available for experienced Lead Rotary Drillers, both in the UK and Worldwide.

- Excellent Rates of Pay
- Conventional, Wireline and Geothermal positions all available
- Onshore and Offshore
- Minimum 5 Years experience and NVQ Level 2 is preferable

All interested applicants, please forward your CV to:
keith.spires@equipetraining.co.uk

Gardline Geosciences is an established and highly respected independent marine geotechnical investigation company and part of the Gardline Group of Companies.

Gardline Geosciences performs marine rotary drilling with wireline tools and seabed CPT’s from its own in house fleet of vessels as well as vessels of opportunity in water depths that range from the nearshore to 2000 metres. Our operations are worldwide, with prestigious projects for major oil and gas clients having recently been completed in the Antarctic; South America; offshore the Grand Banks of Canada as well as the North Sea.

Due to our increasing workloads we are currently seeking to recruit engineering geologists / geotechnical engineers at all levels to help plan; specify and supervise marine seabed investigations.

Core skills required include logging of soil and rock to British and European Standards; a working knowledge of cone penetration testing; laboratory strength and classification testing and the preparation of factual/interpretative reports.

Salary is negotiable depending on experience and all positions carry an attractive offshore allowance.

Reply with a CV to:
Brian Georgious
Gardline Geosciences
1 Hewett Park, Hewett Road
Gapton Hall Industrial Estate
Great Yarmouth, Norfolk
NR31 0NN

Or email to:
brian.georgious@gardline.co.uk

Gardline Geosciences is also constantly looking to strengthen the team further and as such is seeking candidates for the following positions:

COMMERCIAL MANAGER
To head up a team of estimators, assessing and pricing ground investigation contracts throughout the UK. Should have 10 to 15 years minimum experience in the industry, including a solid grounding in tendering and contract managing.

SENIOR CONTRACTS MANAGER
To take responsibility for large and/or complex ground investigations, working with other Managers, staff and sub-contractors. Should have at least 8 years experience in the industry, including significant contract management.

2 no. HIGHLY EXPERIENCED (ROTARY) DRILLERS
To bring additional skills and experience to the drilling team, and to mentor, develop and set an example to more junior drilling staff. Should have at least 10 years varied ground investigation drilling experience, mostly on rotary and multi-purpose rigs.

GEOTECHNICAL CONSULTANT
To bring technical and managerial skills to a relatively young team of geotechnical and geo-environmental engineers, and to help to develop their full potential. Should have at least 15 years experience in both technical and commercial areas, and preferably be chartered with an MSc.

PRINCIPAL GEOTECHNICAL ENGINEER
To further strengthen this young team of engineers (above), both technically and commercially. Should have at least 10 years experience, an MSc, and be working towards chartership.

www.geoeng.co.uk
Please email your CV to andrew.milne@geoeng.co.uk
Driving our industry forward...

Find us online:

Equipe Group
@EquipeGroup
Equipe Training Ltd